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Quantitative measurements of diffuse media, in spectroscopic or imaging mode, rely on the generation of
appropriate forward solutions, independently of the inversion scheme employed. For complex boundaries, the
use of numerical methods is generally preferred due to implementation simplicity, but usually results in great
computational needs, especially in three dimensions. Analytical expressions are available, but are limited to
simple geometries such as a diffusive slab, a sphere or a cylinder. An analytical approximation, the Kirchhoff
approximation, also called the tangent-plane method is presented for the case of diffuse light. Using this
approximation, analytical solutions of the diffusion equation for arbitrary boundaries and volumes can be
derived. Also, computation time is minimized since no matrix inversion is involved. The accuracy of this
approximation is evaluated on comparison with results from a rigorous numerical technique calculated for an
arbitrary geometry. Performance of the approximation as a function of the optical properties and the size of the
medium is examined and it is demonstrated that the computation time of the direct scattering model is reduced
at least by two orders of magnitude.
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I. INTRODUCTION

The study of light transport through highly scattering m
dia, such as tissue, has been the focus of recent rese
geared towards medical diagnostics@1–9#. This has been
motivated by the fact that light offers unique contrast mec
nisms while probing structural and functional tissue char
teristics. Furthermore, the associated technology emp
nonionizing radiation and is generally low cost. Imagi
through tissues using light in the near infrared~NIR! spectral
region offers penetration capability of several centimet
due to the low absorption by tissue in the 700–850 nm sp
tral region. Lately, rigorous mathematical modeling of lig
propagation in tissue~see Ref.@10# for a review!, combined
with technological advancements in photon sources and
tection techniques, has made possible the application o
mographic principles@11# for NIR three-dimensional imag
ing of the internal optical contrast of tissue, using
technique generally termed diffuse optical tomograp
~DOT! @5–22#.

At the moment, powerful numerical methods are availa
for accurately solving the direct scattering proble
@17,18,23# for arbitrary geometries, but these methods

*Email address: jripoll@iesl.forth.gr
1063-651X/2001/64~5!/051917~8!/$20.00 64 0519
-
rch

-
-

ys

s
c-

e-
o-

y

e

e

computationally costly. A fast method that can be applied
arbitrary geometries is needed for real time diagnostics
good candidate is the Kirchhoff approximation~KA !, also
called the tangent-plane method@25,26#. This approximation
is a linear method that does not involve matrix inversi
while solving the forward problem. The KA can be used
generate the sensitivity functions~or weights! of the system,
so that inversion schemes such as algebraic reconstru
techniques~ART! @11#, amongst others, may be applie
Also, since it generates the complete Green function for
three-dimensional~3D! geometry, it is possible to apply it to
improve the already existing reconstruction methods that
the Born or Rytov approximations@6–9,11–15#.

The KA is a well-known approximation in physical optic
that has been under study for over 30 years, and, in part
lar, extensively employed in studies of scattering from rou
surfaces~see Ref.@26# and references therein!. In these
cases, the validity of the KA has been usually studied ver
the angle of incidence. We here study the performance of
KA for a point source in an arbitrary diffusive medium i
order to demonstrate the potential of the KA in diffuse op
cal tomography. We would like to state that a more rigoro
study of the limits of validity of the KA would imply calcu-
lating the error for each frequency component of the incid
wave, but this is out of the scope of the present paper.

In this work, we present the theory of the Kirchhoff a
©2001 The American Physical Society17-1
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proximation in the diffusion equation context, and study
limits of validity. In Sec. II we present the exact expressi
for the Green function for arbitrary diffusive volumes.
Sec. III we introduce the KA specifics and derive the expr
sion for the approximate Green function for an arbitrary g
ometry from the exact expression. The limits of validity
the KA are studied in Sec. IV as a function of the medium
size and optical properties. We demonstrate that these li
are independent of the geometry and depend mainly on
size of the system in diffusion length units. KA is applied
an arbitrary geometry, and compared with results obtai
when employing an accurate numerical method and the
nite homogeneous Green function. We investigate the a
racy of the KA and compare the computational times of b
methods, demonstrating that the KA is more than two ord
of magnitude faster than accurate numerical methods
therefore, could be a very useful tool for DOT. Finally, w
conclude in Sec. V.

II. THEORY: EXACT EXPRESSION FOR THE GREEN
FUNCTION

Let us consider the geometry shown in Fig. 1, consist
of a diffusive volumeV bounded by surfaceS, which sepa-
rates it from an outer nondiffusive medium of refractive i
dex nout. This diffusive medium is characterized by its a
sorption coefficientma , the diffusion coefficientD5 1

3 (ms8
1ama) ~wherems8 is the reduced scattering coefficient!, and
the refractive indexn in . In the expression forD, the factora
does not have a closed-form expression and has values
range froma50 to a51 depending on the approximatio
used~see Ref.@24# and references therein for more insight
the subject!. Even so, since we have not found significa
differences in the results presented here when introducing
dependence ofD on absorption, we shall usea50 for sim-

FIG. 1. Scattering geometry.
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plicity. If the incident light impinging on the medium is
modulated at a frequencyv, the average intensityU(r ,t)
5U(r )exp@2ivt# detected atr represents a diffuse photo
density wave~DPDW! @1# and obeys the Helmholtz equatio
with a wave numberk5(2ma /D1 ivn/cD!1/2, wherec is
the speed of light in vacuum, andn is the refractive index of
the medium. In an infinite homogeneous medium, the Gr
function g satisfies

“

2g~kur s2rdu!1k2g~kur s2rdu!524pd~r s2rd!, ~1!

where r s and rd represent the source and detector poin
respectively. In 3D it is well known to be

g~kur s2rdu!5
exp@ ikur s2rdu#

ur s2rdu
. ~2!

In terms of thecompleteGreen functionG(r s ,rd) that cor-
responds to the full geometry in Fig. 1 with boundaries,
expression of the average intensity at a pointrd inside the
medium is

U~rd!5
1

4p E
n

S~r 8!

D
G~r 8,rd!dr 8, rdPV, ~3!

whereS(r 8) represents the source distribution andV is the
volume occupied by the diffusive medium. Of course, for
source in infinite spaceG(r s ,rd)5g(kur s2rdu).

The complete Green function inside the diffusive mediu
can be expressed in terms of its surface integral by mean
Green’s Theorem~see Refs.@23, 27# for a detailed deriva-
tion! as

G~r s ,rd!5g~kur s2rdu!2
1

4p E
s
FG~r s ,r 8!

]g~kur 82rdu!
]n8

2g~kur 82rdu!
]G~r s,r 8!

]n8 GdS8, ~4!

wheren8 is the surface unit outward normal pointing into th
nondiffusive medium~see Fig. 1!, and]/]n85n8•“ r 8 . The
boundary condition between the diffusive and nondiffus
medium in the diffusion approximation is obtained by a
suming that all the flux traversing the interface is outwa
into the nondiffusive medium~see Ref.@28# for a detailed
derivation!. This is always true as long as no sources
located outside the diffusive medium. In terms of the Gre
function this boundary condition is expressed as@28–30#

G~r s ,r 8!us52CndD
]G~r s,r 8!

]n8
U

S

, r 8PS, ~5!

where the coefficientCnd takes into account the refractiv
index mismatch between both media@28#. In the case of
index matched media, i.e.,nout5n in , Cnd52. Introducing
Eq. ~5! into Eq. ~4!, we obtain
7-2
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KIRCHHOFF APPROXIMATION FOR DIFFUSIVE WAVES PHYSICAL REVIEW E64 051917
G~r s,rd!5g~kur s2rdu!1
1

4p E
S
FCndD

]g~kur 82rd!

]n8

1g~kur 82rdu!G ]G~r s,r 8!

]n8
dS8. ~6!

A rigorous solution toG(r s ,rd) in Eq. ~6! is found by
determining the boundary value]G/]n8 by discretizing the
surfaceS into a number of surface elements and inverting
resulting matrix~see Ref.@23# and references therein!. Simi-
larly to Ref. @23#, Eq. ~6! makes an indirect use of the ex
tinction theorem in order to solve the system; hereon we
refer to this method as theextinction theorem~ET! method.
The ET method gives a rigorous numerical solution to
forward problem, but is time consuming since it involv
matrix inversion, and, therefore, is also limited to surfac
that can be segmented to a moderate number of discretis
points. For example, solving for more than 5000 surfa
points is generally excessive while considering the inve
problem, requiring about 1 h for one forward calculation on
a Pentium III running at 650 MHz with 256 Mb memory
Even so, it must be understood that the computation tim
considered in this paper correspond to Eq.~6!, which has
only one unknown variable. In the case of a diffusive volum
within a diffusive medium, the existence of two unknow
variables~the average intensity and its derivative! increases
the number of unknown variables by a factor of two. Hen
assuming that in order for the ET to give accurate results,
minimum distance between two discretization points mus
in the order of the transport mean free pathl tr51/ms8 , the ET
method would become inappropriate to solve the inve
problem for diffusive/nondiffusive surface areas in the ord
of 50 cm2, or 25 cm2 in the case of diffusive/diffusive pro
files. This fact limits the applicability of exact methods
large geometries, such as the adult head. Anyhow, the us
exact methods such as the ET is fundamental in orde
validate approximate methods~see Sec. 5 of Ref.@23#, where
a brief discussion of the need for exact methods in opt
tomography is presented!. Conversely, the computing tim
required is practically independent of the number of detec
points since Eq.~6! provides for a direct solution of detecto
readings along the boundary simultaneously. This is gen
for all surface-value dependent methods.

III. THE KIRCHHOFF APPROXIMATION

When many forward solution calculations are require
such as in most tomographic schemes~except those reporte
in Ref. @16#!, an approximation to Eq.~6! that can handle
arbitrary 3D geometries in a linear fashion is needed,
reduce computing time and memory requirements. One s
approximation is the KA, also known as the physical-opt
or the tangent-plane method@25#, which is well known and
used in both optics and acoustics. This approximation
sumes that the surface is replaced at each point by its tan
plane. This means that the value of the total intensityU at
any point r p of the surfaceS is given by the sum of the
incident field U (inc) and the wave reflected from thelocal
plane defined by the surface normaln(r p) at that surface
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point. In terms of the Green function this is expressed as

GKA~r s ,r p!5g~kur s2r pu!* @11RND~r p!#, ~7!

where* denotes convolution, andRND is the reflection coef-
ficient for diffusive waves in real space, which in Fouri
space has the expression for each plane wave componeng
@31#,

RND~K !5
iCndDAk22K211

iCndDAk21K221
. ~8!

In a similar manner, the gradient of the Green function is

]GKA~r s ,r p!

]np
5

]g~kur s2r pu!
]np

* @12RND~r p!#, ~9!

the minus sign takes into consideration the different pro
gation directions of the incident and reflected wave with
spect to the local plane. Equations~7! and ~9! are directly
expressed in Fourier space as

GKA~r s ,r p!5E
2`

1`

@11RND~K !#g̃~K ,Z̄!exp@ iK•R̄#dK ,

]GKA~r s ,r p!

]n̂p

5E
2`

1`

@12RND~K !#
]g̃~K ,Z̄!

]Z̄
exp@ iK•R̄#dK .

~10!

In order to numerically perform the Fourier transforms in E
~10!, a typical number of values forK is 512 for each di-
mension, withudK u;0.123 cm21, which corresponds to a
spatial discretization value ofudRu50.1 cm. The need for a
low number ofK values is due to the fact that DPDW’s a
highly damped and do not contain high spatial frequenc
256 values forK were also tested, finding differences smal
than 1%. In all cases presented in this work 512K values
were employed. In Eq.~10! (R̄,Z̄) are the coordinates o
ur s2r pu with respect to the plane defined byn(r p) as shown
in Fig. 2, namely,

Z̄5~r s2r p!•@2n̂~r p!#,
~11!

R̄5Z̄2~r s2r p!.

In Eq. ~10! the Fourier transformg̃(K ,z) of the 3D homoge-
neous Green functiong(kur s2r pu) is given by@20,21,31,32#

FIG. 2. ~a! Detail of the local tangent plane used in the KA.~b!
Representation in the coordinates of the tangent plane.
7-3
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JORGE RIPOLLet al. PHYSICAL REVIEW E 64 051917
g̃~K ,Z̄!5
i

2p

exp@ iAk22K2uZ̄u#

Ak22K2
,

]g̃~K ,Z̄!

]Z̄
5

1

2p
exp@ iAk22K2uZ̄u#. ~12!

Therefore, if we discretise the surfaceS in Eq. ~6! into N area
elementsDS, we can write the complete Green functio
given by Eq.~6! inside the volumeV in terms of the KA as

GKA~r s ,rd!5g~kur s2rdu!1
DS

4p (
p51

N FCndD
]g~kur p2rdu!

]np

1g~kur p2rdu!G ]GKA~r s ,r p!

]np
. ~13!

Equation~13! is an explicit expression of the Green fun
tion where the computation time will increase only linea
with the system size. Also, one of the main advantages
Eq. ~13! is that the values of]GKA/]np given by Eq.~10!
need only to be calculated once for all possible source-p
distancesZ̄ and R̄ values present in the geometry, recallin
or interpolating its value each time the source and plane
sitions r s and r p hold Eq. ~11!. This considerably increase
the computation speed by reducing the number of Fou
transforms, especially in the cases in which many differ
source positions need to be generated, such as in DOT
would like to state that an analogous expression to Eq.~13!
can be easily found for diffusive/diffusive interfaces b
means of the diffusive/diffusive reflection and transmiss
coefficients@33#.

IV. NUMERICAL RESULTS

In order to study the limits of validity of the KA, we
compare the performance of the exact solution, based on
~6!, with the approximate solution, based on Eq.~13!, using
the geometry shown in Fig. 3. The cylinder has a radiusR,
lengthh, and is illuminated by an infinite longitudinal ligh
source running parallel to the cylinder at (Rs5R2 l tr u50!,
where l tr51/ms8 is the transport mean free path. The refra
tive indices inside and outside the diffusive volume are t
of water, i.e.,n in51.333, and of air,nout51, respectively. An
angular scan is performed at~Rd5R2 l tr , z50!. In order to
quantify the accuracy of the approximation, we shall defi
the error in percentage as

~Error!51003E
2p

u12UKA~Rd ,u!/UET~Rd ,u!udu,

~14!

whereUET is the exact solution obtained from the ET@23#
using 2D Green functions~corresponding to an infinitely
long cylinder!, andUKA is the solution obtained from the KA
using a 3D geometry~corresponding to a cylinder of lengt
h!. In order to solve for the ET by means of Eq.~6! for a
cylinder and a line source, we used the corresponding G
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function in 2D, g(kur s2rdu)5p iH 0
(1)(kur s2rdu), where

H0
(1) is the zero-order Hankel function of the first kind.
In all cases, the KA results will be generated for a cyli

der of heighth510 cm and no lids, consisting ofN59191
surface discretisation points. The value ofh was such that no
variation in the results was found by increasing its value. T
results generated with the ET in 2D consisted ofN5360
points. In these cases, a lookup table consisting of 257 va
for R̄ and a maximum value forZ̄ of R was generated, with
a distance of 0.1 cm between values. We performed the s
in the continuous illumination mode~CW!, since in this mo-
dality light suffers less attenuation. For higher attenuat
values the multiple reflections between the surface bound
decays, and, therefore, the limits of validity here found w
apply to all frequency modulation values. A similar stud
was performed for different modulation frequencies, findi
the error in amplitude in the order or smaller than in
corresponding CW case, and a difference in phase in
order of 1 to 5 degrees.

In Fig. 4 we show the error committed by the KA fo
different values ofR, absorption, and scattering coefficien
as compared to the ET solution. The results shown here
representative of biologically relevant optical properties.
the whole, the approximation works well~,5% error! for
R.3Ld , whereLd5AD/ma is the diffusion length in CW
(v50). That is, to maintain an error below 5% forR
51.5 cm,Ld should be larger than 0.5 cm forms855 cm21,
which givesms8.0.13 cm21 ~see Fig. 4!. When diffusive/

FIG. 3. Geometry used for the study of the limits of validity
the KA.
7-4
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FIG. 4. ~a! Error in percentage committed fo
different values ofma and cylinder radiiR. In all
casesms8510 cm21. ~b! Same as~a! but for dif-
ferent values ofms8 for R51 cm.
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diffusive interfaces are considered the approximation wo
much better, and is valid for 2R.3Ld because lower reflec
tivity is attained in this case~similar results where obtaine
in Ref. @31#!.

In order to establish the effect of the surface topograp
we have studied the same configuration as in Fig. 4, but h
added a sine profile of amplitude 0.5 cm and periodp/4 to
the surface. In this case, a lookup table consisting of
values for R̄ and 76 values forZ̄ was generated, with a
distance of 0.1 cm between values. The error between the
and the KA, is now depicted in Fig. 5 for two cases of sou
position ~Fig. 5 top row Rs52.3 cm, bottom row Rs
51.5 cm!. In addition, we have also represented this er
when, instead of the KA, we simply use the homogene
Green function, Eq.~2!, to calculate the source radiation u
ing Eq. ~3!. Generally, the KA approximation calculates th
average intensity with errors that are less than 5%@see Fig.
5~a! and Fig. 5~c!#, except in the shadow regions of the co
rugations. Thisshadowing effectappears when certain su
face areas are blocked from the source by the geometr
the interface. Since these shadow areas are not taken
account in the KA, the KA predicts higher values of th
intensity. A first approximation to this problem would be
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include a geometry-dependent constant that will assig
zero value to those surface points not visible from the sou
position. Such a geometry factor was included and the res
presented in Fig. 5 repeated, finding no important impro
ment. Another way of improving the KA is to include secon
order reflections, but this would render the method time c
suming and thus would loose its potential as a fast analyt
tool.

In Fig. 5 we also see that the approximation yields err
in the order of 5–10% close to the boundaries, where
Green function has low values due to the boundary con
tions that force the average intensity to zero at approxima
one extrapolated distance (l tr) from the interface@28#. When
the error obtained from the KA is compared with that o
tained by using a mere homogeneous Green function@see
Fig. 5~b! and Fig. 5~d!#, we see that the KA is more accura
by one order of magnitude. Similar figures to those rep
sented in Fig. 5 were generated for a modulation freque
of v5200 MHz. In this case we found that the error dist
bution in amplitude was very similar to the cases presen
in Fig. 5, with slightly smaller values, and thus results a
not shown. This is expected due to the lower reflectivity
the boundaries. The maximum phase difference found for
n

d:
FIG. 5. Error committed in percentage whe
using the KA @~a! and ~c!# and when using the
homogeneous Green function@~b! and ~d!# for a
cylinder of R52.5 cm with a sine profile on the
boundary of amplitude 0.5 cm, and periodp/4.
The following source locations are considere
~Rs52.3 cm, u50! @~a! and ~b!#; ~Rs51.5 cm,
u50! @~c! and ~d!#. In all casesms8510 cm21,
ma50.1 cm21.
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JORGE RIPOLLet al. PHYSICAL REVIEW E 64 051917
KA was 2 deg at the shadow regions and 1 deg near
boundaries. When compared to the infinite Green funct
we found 60 deg difference at the shadow regions an
minimum phase difference of 10 deg.

In general terms of the KA, it is expected that lower sp
tial frequenciesK ~or angles of incidence close to the norm
in the electromagnetic case@25,26#! will yield more accurate
solutions than high spatial frequencies~or grazing angles of
incidence in the electromagnetic case@25,26#!. This may be
translated to diffusive waves in the following manner. In t
cases in which the point source is close to the interface, h
spatial frequencies play an important role. It is in these ca
in which the KA is expected to fail for diffusive waves, sinc
then multiple reflections are predominant. On the other ha
when the source is far~more than one diffusion length! from
the interface, due to high damping the high frequencies c
ponents of the incident wave do not contribute significan
to the incident wave at the interface, reducing the multi
reflections. This effect is shown in Fig. 6, where we rep
sent the error when considering the perturbation caused
the interface, i.e., the scattered waveGSC @see Eq.~13!#:

GSC
KA~r s ,rd!5GKA~r s ,rd!2g~kur s2rdu!. ~15!

As seen in Fig. 6, the error obtained from the KA at lo
distances from the source where only low values ofK con-
tribute to the incident field is very low~,5%!. On the other
hand, values of the scattered wave in the regions where
source is near the interface present larger errors~20%!, due
to the higher contribution of large values ofK .

We have tested other values of the period and the am
tude of the sine profile, reaching the same conclusion: o
side the shadow regions, and forR.3Ld , the error is con-
sistently less than 5%. This also holds true for calculatio
performed for a rough surface plane, such as in Ref.@34#.

As mentioned before, besides its ability to handle ar
trary geometries the KA is attractive due to its computat
efficiency. In Fig. 7 we present a comparison of the com
tation times obtained by using the ET and the KA with

FIG. 6. Error committed in percentage for the scattered Gr
function @see Eq.~15!# when using the KA for a cylinder ofR
52.5 cm with a sine profile in the boundary of amplitude 0.5 c
and period p/4. Source locations~Rs51.5 cm, u50!, ms8
510 cm21, ma50.1 cm21.
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Pentium III running at 650 MHz, with 256 Mb memory
These computation times include the generation of
lookup table for (R̄,Z̄) @see Eq.~11!# aforementioned in Sec
III. That is, the computation times presented make use of
a priori calculations. In all cases shown here, the look
table for (R̄,Z̄) is generated by finding the range of valu

@min$R̄%,max$R̄%# and@min$Z̄%,max$Z̄%# present in the geom
etry, and generating all the corresponding values of Eq.~10!,
with an increase of one transport mean free path (l tr) be-
tween (R̄,Z̄) values. This discretisation value can be und
stood since the diffusion equation in itself has no mean
when considering distances smaller thanl tr . Once the lookup
table for Eq.~10! is built, the different values present in Eq
~13! are found by interpolation. As mentioned in Sec. III,
order to numerically perform the Fourier transforms 512K
values were used for each dimension~i.e., 5123512!, with
udK u;0.123. The computation times are represented in F
7 versus the number of discretisation pointsN @see Eqs.~6!
and~13!#, which in the ET are independent on the dimensi
and shape of the geometry. In the case of the KA, since
computing time is dependent on the number (R̄,Z̄) values,
we present two cases: a case in which we have a cylinde
radiusR52 cm, and increase its height from 0–15 cm~open
circles in Fig. 7!; and a cylinder that is increased in radiusR
from 0.5–4 cm and its height ash52R ~full circles in Fig.
7!. In all the KA cases the discretized areas are kept to
dS50.130.1 cm2. Due to the fact that both the KA and th
ET perform equivalently for any number of source-detec
pairs once the surface values are found, the computa

n

,

FIG. 7. Computation times for one source-detector pair ver
the number of surface pointsN @see Eq.~13!# for the ET represented
in minutes@solid line# and for the KA represented in seconds for t
cases: cylinder of radiusR52 cm, with its height increased from
0–15 cm @open circles#; and a cylinder with its radius increase
from R50.5– 4 cm and its height ash52R @full circles#. Results
obtained from a Pentium III running at 650 MHz with 256 M
memory.
7-6
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times presented in Fig. 7 correspond to the forward prob
for one source-detector pair. When considering the com
tational times for the ET in Fig. 7, we see that there is
approximately quadratic increase with respect toN ~note the
difference in scale between the KA and the ET!. On the other
hand, when considering the KA, we see that the increas
approximately linear for both cases, the difference in slo
due to the dependence on the number of (R̄,Z̄) values gen-
erated. As a practical example, the number of discretiza
points for a sphere of radius 2 cm needed in order to m
tain a 1l tr distance between points is in the order of 5000
we compare the speed of the KA and the ET in this case
obtain 70 s and 50 min, respectively, yielding the KA
approximately 40 times faster. A more realistic surface s
as the adult head, would imply an equivalent radius of
least 4 cm, and thusN;20 000. In this case, the KA takes i
the order of 90 s, whereas the ET takes in the order of 4
for one only forward solution. In this more realistic case t
KA is 1800 times faster.

V. CONCLUSIONS

We have presented an approximate method that solve
3D diffusion equation in geometries of arbitrary shape a
size in a linear fashion. This approximation has been co
pared to the ET solution of the diffusion equation@23#, a
boundary-value dependent numerical method that has b
extensively used in physical optics due to its high degree
accuracy@25#. We have found that when the average rad
of the geometry considered isR.3(D/ma)1/2, the method
performs with an error less than 5%. Therefore, with the K
we can generate general Green functions that take into
count complex geometries, the computation times of this
E.
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t.
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proximation being very fast compared to the rigorous so
tion, and increasing linearly with the size of the system. T
implications of this approximation are several: In the fi
place, these KA Green functions can be employed in m
complex numerical schemes such as the ET@23#, so as to
reduce the number of discretization points needed to so
the forward problem. As an example, the problem of an
ject embedded in an arbitrary volume would be reduced to
object on its own by using the KA Green function. In
similar manner, it can be used to improve the reconstruc
schemes based on Rytov or Born approximations, such
algebraic reconstruction technique~ART! and simultaneous
iterative reconstructive technique~SIRT! @11–15#. Second,
since the computation times and the memory requireme
increase linearly with the size of the system, the KA may
used to describe light propagation in large volumes such
adult head, the calf, etc. It is in these large volumes wh
rigorous numerical methods have problems due to the g
amount of memory required for matrix inversion, and t
need of extremely large computational times to solve
inverse problem. We believe that this approximation will a
to the development of real time diagnostics with diffuse lig
in the presence of complex boundaries.
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