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Kirchhoff approximation for diffusive waves
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Quantitative measurements of diffuse media, in spectroscopic or imaging mode, rely on the generation of
appropriate forward solutions, independently of the inversion scheme employed. For complex boundaries, the
use of numerical methods is generally preferred due to implementation simplicity, but usually results in great
computational needs, especially in three dimensions. Analytical expressions are available, but are limited to
simple geometries such as a diffusive slab, a sphere or a cylinder. An analytical approximation, the Kirchhoff
approximation, also called the tangent-plane method is presented for the case of diffuse light. Using this
approximation, analytical solutions of the diffusion equation for arbitrary boundaries and volumes can be
derived. Also, computation time is minimized since no matrix inversion is involved. The accuracy of this
approximation is evaluated on comparison with results from a rigorous numerical technique calculated for an
arbitrary geometry. Performance of the approximation as a function of the optical properties and the size of the
medium is examined and it is demonstrated that the computation time of the direct scattering model is reduced
at least by two orders of magnitude.
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[. INTRODUCTION computationally costly. A fast method that can be applied to
arbitrary geometries is needed for real time diagnostics. A
The study of light transport through highly scattering me-good candidate is the Kirchhoff approximatiokA), also
dia, such as tissue, has been the focus of recent researchlled the tangent-plane methf®2b,26]. This approximation
geared towards medical diagnostics-9]. This has been is a linear method that does not involve matrix inversion
motivated by the fact that light offers unique contrast mechawhile solving the forward problem. The KA can be used to
nisms while probing structural and functional tissue characgenerate the sensitivity functioiier weights of the system,
teristics. Furthermore, the associated technology employso that inversion schemes such as algebraic reconstruction
nonionizing radiation and is generally low cost. Imagingtechniques(ART) [11], amongst others, may be applied.
through tissues using light in the near infraf@R) spectral ~ Also, since it generates the complete Green function for any
region offers penetration capability of several centimetershree-dimensional3D) geometry, it is possible to apply it to
due to the low absorption by tissue in the 700—850 nm spedmprove the already existing reconstruction methods that use
tral region. Lately, rigorous mathematical modeling of light the Born or Rytov approximatior{$—9,11-15.
propagation in tissuésee Ref[10] for a review, combined The KA is a well-known approximation in physical optics
with technological advancements in photon sources and dehat has been under study for over 30 years, and, in particu-
tection techniques, has made possible the application of tdar, extensively employed in studies of scattering from rough
mographic principleg11] for NIR three-dimensional imag- surfaces(see Ref.[26] and references therginin these
ing of the internal optical contrast of tissue, using acases, the validity of the KA has been usually studied versus
technique generally termed diffuse optical tomographythe angle of incidence. We here study the performance of the
(DOT) [5-22. KA for a point source in an arbitrary diffusive medium in
At the moment, powerful numerical methods are availableorder to demonstrate the potential of the KA in diffuse opti-
for accurately solving the direct scattering problemcal tomography. We would like to state that a more rigorous
[17,18,23 for arbitrary geometries, but these methods arestudy of the limits of validity of the KA would imply calcu-
lating the error for each frequency component of the incident
wave, but this is out of the scope of the present paper.
*Email address: jripoll@iesl.forth.gr In this work, we present the theory of the Kirchhoff ap-

1063-651X/2001/6¢45)/0519178)/$20.00 64 051917-1 ©2001 The American Physical Society



JORGE RIPOLLet al. PHYSICAL REVIEW E 64 051917

plicity. If the incident light impinging on the medium is
modulated at a frequency, the average intensityJ(r,t)
=U(r)exd —iwt] detected ar represents a diffuse photon
density wavgDPDW) [1] and obeys the Helmholtz equation
with a wave numbek=(— u,/D+iwv/cD)'? wherec is

the speed of light in vacuum, andis the refractive index of
the medium. In an infinite homogeneous medium, the Green
function g satisfies

V2g(klrs—ra)) + K2g(k[rs—ra)) = —4ma(rs—ry), (1)

whererg and ry represent the source and detector points,
respectively. In 3D it is well known to be

exdik|rs—rql]
|rs_rd|

g(K|rs_rd|): (2

In terms of thecompleteGreen functionG(rg,rq) that cor-
responds to the full geometry in Fig. 1 with boundaries, the
expression of the average intensity at a paointinside the
medium is

FIG. 1. Scattering geometry.

S(r')
D

proximation in the diffusion equation context, and study its U(rg) = Ef G(r',rgdr’, rgqeV, 3
limits of validity. In Sec. Il we present the exact expression v

for the Green function for arbitrary diffusive volumes. In

Sec. Il we introduce the KA specifics and derive the expreswWhereS(r’) represents the source distribution avids the

sion for the approximate Green function for an arbitrary ge-volume occupied by the diffusive medium. Of course, for a
ometry from the exact expression. The limits of validity of source in infinite spac(rs,rq)=g(«|rs—rql).

the KA are studied in Sec. IV as a function of the medium’'s The complete Green function inside the diffusive medium
size and optical properties. We demonstrate that these limit@an be expressed in terms of its surface integral by means of
are independent of the geometry and depend mainly on thgreen’s Theorenisee Refs[23, 27 for a detailed deriva-
size of the system in diffusion length units. KA is applied to tion) as

an arbitrary geometry, and compared with results obtained

when employing an accurate numerical method and the infi- ) ag(klr' —rg))

nite homogeneous Green function. We investigate the accu-C(F's:Ta) =g(x|rs—Ta)) = — L[G(rs,r )

racy of the KA and compare the computational times of both

methods, demonstrating that the KA is more than two orders aG(rg,r’)

of magnitude faster than accurate numerical methods and, _g(K|r’_rd|)T ds’, 4

therefore, could be a very useful tool for DOT. Finally, we

conclude in Sec. V. wheren’ is the surface unit outward normal pointing into the

nondiffusive mediunsee Fig. 1, andd/on’=n’-V,,. The
Il. THEORY: EXACT EXPRESSION FOR THE GREEN boundary condition between the diffusive and nondiffusive
FUNCTION medium in the diffusion approximation is obtained by as-
) . _ . suming that all the flux traversing the interface is outwards

Let us consider the geometry shown in Fig. 1, consistingn, the nondiffusive mediuntsee Ref[28] for a detailed
of a diffusive volumeV bounded by surfac& which sepa-  gerivation. This is always true as long as no sources are
rates it from an outer nondiffusive medium of refractive in- |5cated outside the diffusive medium. In terms of the Green

dex voy. This diffusive medium is characterized by its ab- f,nction this boundary condition is expressed 2830
sorption coefficientu,, the diffusion coefficienD =3 (.

+au,) (Wherew! is the reduced scattering coefficigrand IG(ror’)
the refractive indew;, . In the expression fob, the factora G(rg,r')|s=—CpD ﬁ—s, , r'es, (5)
does not have a closed-form expression and has values that n s

range froma=0 to =1 depending on the approximation

used(see Ref[24] and references therein for more insight on where the coefficienC, takes into account the refractive
the subjedt Even so, since we have not found significantindex mismatch between both medi28]. In the case of
differences in the results presented here when introducing thadex matched media, i.eyo,= vih, Chg=2. Introducing
dependence dD on absorption, we shall use=0 for sim-  Eq. (5) into Eq. (4), we obtain
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ag(klr'—rq)

1
G(rsyrd):g(’(|rs_rd|)+Efs[cndD an

dG(rg,r’
¥d8’.
an

+9(K|f'—rd|)} (6)

A rigorous solution toG(rg,ry) in Eqg. (6) is found by
determining the boundary valugs/dn’ by discretizing the , _
surfaceSinto a number of surface elements and inverting the_ F'C- 2. (8 Detail of the local tangent plane used in the KA)
resulting matrix(see Ref[23] and references thergirSimi- Representation in the coordinates of the tangent plane.
larly to Ref.[23], Eq. (6) makes an indirect use of the ex-
tinction theorem in order to solve the system; hereon we wil
refer to this method as thextinction theorem{ET) method. KA _ _

The ET method gives a rigorous numerical solution to the G*(rs.1p) =g(k|rs=rp)*[1+Ryp(rp)], (7)
forward problem, but is time consuming since it involves,yherex denotes convolution, ardyg, is the reflection coef-
matrix inversion, and, therefore, is also limited to surfacescient for diffusive waves in real space, which in Fourier

that can be segmented to a moderate number of discretisatiqpace has the expression for each plane wave compongnt of
points. For example, solving for more than 5000 surface[31]

points is generally excessive while considering the inverse

Ipoint. In terms of the Green function this is expressed as

problem, requiring _abduL h for one forward calculation on iC.D [(P—K2+1
a Pentium Il running at 650 MHz with 256 Mb memory. Runp(K) = - . (8)
Even so, it must be understood that the computation times iIChaD VK +K =1

considered in this paper correspond to E8), which has
only one unknown variable. In the case of a diffusive volume
within a diffusive medium, the existence of two unknown 9GKA(rg.r)  ag(klre—r)
variables(the average intensity and its derivativieacreases A S P
the number of unknown variables by a factor of two. Hence, INp Ny
assuming that in order for the ET to give accurate results, theh

minimum distance between two discretization points must pdhe minus sign takes Into gonS|derat|on the different propa-
gation directions of the incident and reflected wave with re-

in the order of the transport mean free phfk 1/x, , the ET . .
method would become inappropriate to solve the invers<§pect to th? local .plane. Equatioi and (9) are directly
expressed in Fourier space as

problem for diffusive/nondiffusive surface areas in the order
of 50 cnf, or 25 cnf in the case of diffusive/diffusive pro- . - -
files. This fact limits the applicability of exact methods in GKA(rS,rp)zf [1+Ryp(K)JO(K,2)exd iK - R]dK,
large geometries, such as the adult head. Anyhow, the use of -

exact methods such as the ET is fundamental in order to

In a similar manner, the gradient of the Green function is

*[1-Rnp(rp)l, (9

+

validate approximate methogsee Sec. 5 of Ref23], where  9G"A(r4 1) +o0 A(K,Z) -

a brief discussion of the need for exact methods in opticalfzf [1—Rnp(K)] ———exdiK-R]dK.
tomography is presentgdConversely, the computing time 9Ny o 0z

required is practically independent of the number of detector (10)

points since Eq(6) provides for a direct solution of detector
readings along the boundary simultaneously. This is gener

I‘I order to numerically perform the Fourier transforms in Eq.
for all surface-value dependent methods. ?

0), a typical number of values fdK is 512 for each di-
mension, with|dK|~0.123 cm?, which corresponds to a
spatial discretization value ¢éiR|=0.1 cm. The need for a

IIl. THE KIRCHHOFF APPROXIMATION low number ofK values is due to the fact that DPDW'’s are

When many forward solution calculations are required,Nighly damped and do not contain high spatial frequencies.
such as in most tomographic schentescept those reported 256 values foK were also tested, f.|nd|n_g differences smaller
in Ref. [16]), an approximation to Eq(6) that can handle than 1%. In all cases presented in this work 34 Zalues
arbitrary 3D geometries in a linear fashion is needed, towere employed. In Eq(10) (R,Z) are the coordinates of
reduce computing time and memory requirements. One sudfis—I'p| With respect to the plane defined hyr,) as shown
approximation is the KA, also known as the physical-opticsin Fig. 2, namely,
or the tangent-plane meth¢#5], which is well known and

used in both optics and acoustics. This approximation as- f=(rs—rp)-[—ﬁ(rp)],
sumes that the surface is replaced at each point by its tangent o (11
plane. This means that the value of the total intenkitpt =Z—(rs—rp).

any pointr, of the surfaceS is given by the sum of the
incident field U™ and the wave reflected from tHecal In Eq. (10) the Fourier transforr(K,z) of the 3D homoge-
plane defined by the surface normalr,) at that surface neous Green functiog(K|rs—rp|) is given by[20,21,31,32
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Ak Z)_l_ exdiVik?—K?|Z|]
S N Line|Source R
AK.2Z) 1 K, —>

7 ;exp{i (12

|

O

Therefore, if we discretise the surfaBén Eq. (6) into N area
elementsAS, we can write the complete Green function
given by Eq.(6) inside the volumeV/ in terms of the KA as

N

AS ag(k|rp—rql) -
KA _ _ - P S
G™\(rs,rg)=9(k|rs—rq))+ 477[)241 [CndD ang h e
é’GKA(rSvrp) M _,”//////
+g(klry—re) | == (13)
p

me

Equation(13) is an explicit expression of the Green func-
tion where the computation time will increase only linearly
with the system size. Also, one of the main advantages of
Eq. (13) is that the values 0bG**/dn, given by Eq.(10)
need only to be calculated once for all possible source-plane

distanceZ andR values present in the geometry, recalling
or interpolating its value each time the source and plane po-
sitionsrg andr, hold Eq.(11). This considerably increases
the computation speed by reducing the number of Fourier
transforms, especially in the cases in which many different FIG. 3. Geometry used for the study of the limits of validity of
source positions need to be generated, such as in DOT. Whke KA.

would like to state that an analogous expression to([E8).

can be easily _found fo_r diffusive/diff_usive interface_s py function in 2D, 9(K|Fs—fd|):WiHél)(K|fs—fd|), where
means of the diffusive/diffusive reflection and transmission,
coefficients[33].

H(Y is the zero-order Hankel function of the first kind.

In all cases, the KA results will be generated for a cylin-
der of heighth=10 cm and no lids, consisting &§=9191

IV. NUMERICAL RESULTS surface discretisation points. The valuehofias such that no

In order to study the limits of validity of the KA, we Variation in the results was found by increasing its value. The
compare the performance of the exact solution, based on EfgSults generated with the ET in 2D consistedNof 360
(6), with the approximate solution, based on Et@), using ~ POINts. In these cases, a lookup table consisting of 257 values
the geometry shown in Fig. 3. The cylinder has a radtus for R and a maximum value faZ of R was generated, with
lengthh, and is illuminated by an infinite longitudinal light a distance of 0.1 cm between values. We performed the study
source running parallel to the cylinder ®(=R—1, #=0), in the continuous illumination mod&€W), since in this mo-
wherel,=1/u. is the transport mean free path. The refrac-dality light suffers less attenuation. For higher attenuation
tive indices inside and outside the diffusive volume are thavalues the multiple reflections between the surface boundary
of water, i.e.,v;,= 1.333, and of airp,,= 1, respectively. An decays, and, therefore, the limits of validity here found will
angular scan is performed @&4=R—1,,, z=0). In order to apply to all frequency modulation values. A similar study

quantify the accuracy of the approximation, we shall definevas performed for different modulation frequencies, finding
the error in percentage as the error in amplitude in the order or smaller than in its

corresponding CW case, and a difference in phase in the
B KA T order of 1 to 5 degrees.
(Error)=100X L |1-U™(Ry,0)/U='(Ry,0)[d0, In Fig. 4 we show the error committed by the KA for
" (14) different values ofR, absorption, and scattering coefficients
as compared to the ET solution. The results shown here are
where UET is the exact solution obtained from the EZ3] representative of biologically relevant optical properties. On
using 2D Green functiongcorresponding to an infinitely the whole, the approximation works wel<5% errop for
long cylinde, andUX” is the solution obtained from the KA R>3Ly, whereLy= D/ pu, is the diffusion length in CW
using a 3D geometrycorresponding to a cylinder of length (@w=0). That is, to maintain an error below 5% f&
h). In order to solve for the ET by means of E@) for a  =1.5cm,Lq should be larger than 0.5 cm fpr, =5 cm *,
cylinder and a line source, we used the corresponding Greemhich gives u.>0.13cm! (see Fig. 4 When diffusive/
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& — u’=5cm” FIG. 4. (a) Error in percentage committed for
g 10 1er —ep =10cm’ 1 different values ofu, and cylinder radiiR. In all
i o—op ' =20cm casesu.,=10 cm L. (b) Same aga) but for dif-
5 1 sl | ferent values ofug for R=1 cm.

0 1 I 3 hd b 0 ' 1 !
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diffusive interfaces are considered the approximation workénclude a geometry-dependent constant that will assign a
much better, and is valid for>3L4 because lower reflec- zero value to those surface points not visible from the source
tivity is attained in this casésimilar results where obtained position. Such a geometry factor was included and the results
in Ref. [31]). presented in Fig. 5 repeated, finding no important improve-
In order to establish the effect of the surface topographyment. Another way of improving the KA is to include second
we have studied the same configuration as in Fig. 4, but havgrder reflections, but this would render the method time con-
added a sine profile of amplitude 0.5 cm and perigd to  suming and thus would loose its potential as a fast analytical
the surface. In this case, a lookup table consisting of 25¢50|.
values forR and 76 values foiZ was generated, with a In Fig. 5 we also see that the approximation yields errors
distance of 0.1 cm between values. The error between the Eif the order of 5-10% close to the boundaries, where the
and the KA, is now depicted in Fig. 5 for two cases of sourceGreen function has low values due to the boundary condi-
position (Fig. 5 top row Rg=2.3cm, bottom rowR; tions that force the average intensity to zero at approximately
=1.5cm. In addition, we have also represented this errorone extrapolated distancg,f from the interfacé28]. When
when, instead of the KA, we simply use the homogeneoushe error obtained from the KA is compared with that ob-
Green function, Eqg(2), to calculate the source radiation us- tained by using a mere homogeneous Green fundtee
ing Eq. (3). Generally, the KA approximation calculates the Fig. 5(b) and Fig. %d)], we see that the KA is more accurate
average intensity with errors that are less than[S&e Fig. by one order of magnitude. Similar figures to those repre-
5(a) and Fig. %c)], except in the shadow regions of the cor- sented in Fig. 5 were generated for a modulation frequency
rugations. Thisshadowing effecappears when certain sur- of =200 MHz. In this case we found that the error distri-
face areas are blocked from the source by the geometry dfution in amplitude was very similar to the cases presented
the interface. Since these shadow areas are not taken into Fig. 5, with slightly smaller values, and thus results are
account in the KA, the KA predicts higher values of the not shown. This is expected due to the lower reflectivity of
intensity. A first approximation to this problem would be to the boundaries. The maximum phase difference found for the
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FIG. 5. Error committed in percentage when
using the KA[(a) and (c)] and when using the
homogeneous Green functidtb) and (d)] for a
cylinder of R=2.5 cm with a sine profile on the

100 boundary of amplitude 0.5 cm, and period4.
90 The following source locations are considered:
80 (Rg=2.3cm, 6=0) [(a and (b)]; (Rg=1.5cm,
70 6=0) [(c) and (d)]. In all casesu.=10 cm'?,
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FIG. 6. Error committed in percentage for the scattered Green 20
function [see Eq.(15)] when using the KA for a cylinder oR
=2.5 cm with a sine profile in the boundary of amplitude 0.5 cm,
and period @/4. Source locations(Rg=1.5cm, 6=0), ul 0 S P SR
=10cmt, p,=0.1cmt. 0 3000 6000 9000 12000 15000 18000
Number of Surface Points

KA Was_2 deg at the shadow regions .and 1 deg near .the FIG. 7. Computation times for one source-detector pair versus
boundaries. When qompared to the infinite Gregn functionne number of surface poink$[see Eq(13)] for the ET represented
we found 60 deg difference at the shadow regions and & minuteg[solid line] and for the KA represented in seconds for the
minimum phase difference of 10 deg. cases: cylinder of radiuR=2 cm, with its height increased from

~ Ingeneral terms of the KA, it is expected that lower spa-0_15 cm[open circle§ and a cylinder with its radius increased
tial frequencieX (or angles of incidence close to the normal from R=0.5-4 cm and its height ds=2R [full circles]. Results

in the electromagnetic ca$25,26]) will yield more accurate obtained from a Pentium Il running at 650 MHz with 256 Mb
solutions than high spatial frequenci@s grazing angles of memory.

incidence in the electromagnetic cd®5,26]). This may be

translated to diffusive waves in the following manner. In thePentium 11l running at 650 MHz, with 256 Mb memory.
cases in which the point source is close to the interface, higithese computation times include the generation of the
spatial frequencies play an important role. It is in these casegokup table for R,Z) [see Eq(11)] aforementioned in Sec.

in which the KA is expected to fail for diffusive waves, since || That is, the computation times presented make use of no
then multiple reflections are predominant. On the other hand, priori calculations. In all cases shown here, the lookup

when the source is famore than one diffusion lengktirom = . L
the interface, due to high damping the high frequencies comt—alble for R,2) is generated by finding the range of values

ponents of the incident wave do not contribute significantlyl MR}, maxR}] and[min{Z},maxZ}] present in the geom-
to the incident wave at the interface, reducing the multiple8try, and generating all the corresponding values of(E@),
reflections. This effect is shown in Fig. 6, where we repre-With an increase of one transport mean free patf) be-
sent the error when considering the perturbation caused byveen R,Z) values. This discretisation value can be under-

the interface, i.e., the scattered waSe. [see Eq(13)]: stood since the diffusion equation in itself has no meaning
when considering distances smaller thanOnce the lookup
Ggé(fs,fd)=GKA(fs,fd)—g(K|fs—rd|)- (15)  table for Eq.(10) is built, the different values present in Eq.
(13) are found by interpolation. As mentioned in Sec. lll, in

As seen in Fig. 6, the error obtained from the KA at |Ongorder to numerically perform _the Fc_)_urier transforms _EKLZ
distances from the source where only low valuekofon- ~ values were used for each dimensio®., 512<512), with
tribute to the incident field is very low<5%). On the other ~|dK|~0.123. The computation times are represented in Fig.
hand, values of the scattered wave in the regions where thé Versus the number of discretisation poiht$see Eqs(6)
source is near the interface present larger erf®@84), due and(13)], which in the ET are independent on the d|m_en3|0n
to the higher contribution of large values kit and shape of the geometry. In the case of tHe_KA, since the

We have tested other values of the period and the amplicomputing time is dependent on the numbB;4) values,
tude of the sine profile, reaching the same conclusion: outwe present two cases: a case in which we have a cylinder of
side the shadow regions, and fer>3L, the error is con- radiusR=2 cm, and increase its height from 0—15 ¢open
sistently less than 5%. This also holds true for calculationsircles in Fig. ; and a cylinder that is increased in radRs
performed for a rough surface plane, such as in RR. from 0.5—4 cm and its height ds=2R (full circles in Fig.

As mentioned before, besides its ability to handle arbi-7). In all the KA cases the discretized areas are kept to be
trary geometries the KA is attractive due to its computationd S=0.1x 0.1 cnf. Due to the fact that both the KA and the
efficiency. In Fig. 7 we present a comparison of the compuET perform equivalently for any number of source-detector
tation times obtained by using the ET and the KA with apairs once the surface values are found, the computation
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times presented in Fig. 7 correspond to the forward problenproximation being very fast compared to the rigorous solu-
for one source-detector pair. When considering the compution, and increasing linearly with the size of the system. The
tational times for the ET in Fig. 7, we see that there is animplications of this approximation are several: In the first
approximately quadratic increase with respechitthote the place, these KA Green functions can be employed in more
difference in scale between the KA and the)EDn the other complex numerical schemes such as the [B3], so as to
hand, when considering the KA, we see that the increase iduce the number of discretization points needed to solve
approximately linear for both cases, the difference in slopghe forward problem. As an example, the problem of an ob-
due to the dependence on the number%fi) values gen- jeCt embedded in an arbitrary volume would be reduced to an
erated. As a practical example, the number of discretizatio@bject on its own by using the KA Green function. In a
points for a Sphere of radius 2 cm needed in order to mainsimilar manner, it can be used to impl’ove the reconstruction
tain a 1, distance between points is in the order of 5000. IfSchemes based on Rytov or Born approximations, such as
we compare the speed of the KA and the ET in this case walgebraic reconstruction techniqu&RT) and simultaneous
obtain 70 s and 50 min, respectively, yielding the KA asiterative reconstructive techniqu&IRT) [11-15. Second,
approximately 40 times faster. A more realistic surface suci§ince the computation times and the memory requirements
as the adult head, would imply an equivalent radius of aincrease linearly with the size of the system, the KA may be
least 4 cm, and thus~ 20 000. In this case, the KA takes in used to describe light propagation in large volumes such the
the order of 90 s, whereas the ET takes in the order of 45 Rdult head, the calf, etc. It is in these large volumes where
for one only forward solution. In this more realistic case thefigorous numerical methods have problems due to the great

KA is 1800 times faster. amount of memory required for matrix inversion, and the
need of extremely large computational times to solve the
V. CONCLUSIONS inverse problem. We believe that this approximation will aid

to the development of real time diagnostics with diffuse light
We have presented an approximate method that solves tlie the presence of complex boundaries.

3D diffusion equation in geometries of arbitrary shape and
size in a linear fashion. This approximation has been com-
pared to the ET solution of the diffusion equatif23], a
boundary-value dependent numerical method that has been J.R. acknowledges a European TMR grant under Project
extensively used in physical optics due to its high degree oNo. FMRX-CT96-. V.N. acknowledges support in part from
accuracy{25]. We have found that when the average radiusDRG-1638 of the Cancer Research Fund of the Damon
of the geometry considered R>3(D/u,)*? the method Runyon—Walter Winchell Foundation and the U.S. Army
performs with an error less than 5%. Therefore, with the KA(CDMRP BC995360 V.N. and M.N-V. also acknowledge a
we can generate general Green functions that take into ad"MR contract from the EU. This work has received partial
count complex geometries, the computation times of this apsupport from the Spanish DGICYT.
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